Medicine research news Return to previous page
Article Released Fri-24th-August-2012 08:02 GMT
Contact: Adarsh Sandhu Institution: Tokyo Institute of Technology
 Simplifying genetic codes to look back in time

(Tokyo, 24 August 2012) Tokyo Institute of Technology researchers show simpler versions of the universal genetic code can still function in protein synthesis. In addition to understanding early primordial organisms, the research could lead to applications preventing non-natural genetically modified materials from entering the natural world.

Electron density maps
(A) Electron density maps. Upper panel: Alanine introduced by the GCU codon in the universal genetic code. Lower panel: Alanine introduced by the UGG codon in the simplified code. (B) Activity of proteins synthesized by the simplified and universal codes from the gene for each code.
Copyright : Tokyo Institute of Technology
PRESS RELEASE
Source: Tokyo Institute of Technology, Center for Public Information
For immediate release: 24 August 2012

Tokyo Institute of Technology research: Simplifying genetic codes to look back in time

(Tokyo, 24 August 2012) Tokyo Institute of Technology researchers show simpler versions of the universal genetic code can still function in protein synthesis

Daisuke Kiga and co-workers at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology, together with researchers across Japan, have shown that simpler versions of the universal genetic code, created by knocking out certain amino acids, can still function efficiently and accurately in protein synthesis [1]. The researchers conducted experiments altering the genetic codein a test tube. They removed the amino acid tryptophan and discovered that the resulting simplified code could still generate proteins as before. By knocking out individual amino acids and observing the effects, scientists will be able to understand how early primordial organisms may have functioned and evolved. There will be also numerous applications for simplified genetic strains in laboratory experiments, which could potentially prevent non-natural genetically modified materials from entering the natural world.

Details: Background, significance, and future developments

Daisuke Kiga and co-workers of the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology, together with researchers across Japan, have shown that simpler versions of the universal genetic code - created by knocking out certain amino acids - can still function efficiently and accurately in protein synthesis. The researchers conducted cell-free experiments altering the genetic code.

All current life forms on Earth have 20 amino acids in their genetic code. However, scientists believe that this was not always the case, and that organisms evolved from simpler genetic codes with fewer amino acids. Amino acids are linked in accordance with codons – a 3-letter combination of the four base nucleotides (G, A, T and C) in a genetic code. There are 64 possible codons, and so most amino acids are produced by several different codons, except for tryptophan and methionine, which are generated by just one codon each. Tryptophan is thought to be the most recent amino acid to become part of the universal genetic code.

Kiga and his team took the codon for tryptophan, and reassigned it to code for the amino acid alanine instead. They discovered the resulting simplified code could still generate proteins as before. The researchers also reassigned another codon originally for the amino acid cysteine and replaced it with serine. This simplified code without cysteine was able to synthesise an active enzyme.

By knocking out individual amino acids and observing the effects, scientists will be able to understand how early primordial organisms may have functioned and evolved. There are also numerous applications for simplified genetic codes in laboratory experiments and clinical trials.

Before emergence of the current universal genetic code, primitive organisms that may have used only 19 amino acids could benefit from horizontal gene transfer, where cells transfer genetic material between one another. This is a key method used by bacteria to develop resistance to drugs. An organism with the current universal genetic code for 20 amino acids would have competitive advantages in its ability to synthesise proteins, but could not engage in genetic transfer with the rest of the population. Only when a suitably large gene pool of organisms with 20 amino acids is available could horizontal transfer occur between these life forms and they could then thrive. This implies that organisms with a simpler genetic code could be used as a barrier in laboratory experiments, preventing new genetically modified strains from escaping to the natural world.

Further information:

Yukiko Tokida
Center for Public Information, Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975
Fax: +81-3-5734-3661

About Tokyo Institute of Technology

As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Website: http://www.titech.ac.jp/english/

Associated links

Journal information

Reference
1 A. Kawahara-Kobayashi et al. Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Research (2012) As yet unpublished

Keywords associated to this article: universal genetic code, biotechnology, protein synthesis
Login
Password reminder.
Create Account...
Focus On...

The Environment

Focus on...

The Environment

 
Translate this Page...